大后果就是,王浩的研究被认为是正确的,强湮灭力也快速确定了存在,而帕森斯则被认为是‘骗子,。

    好多学者自然开始抨击去了《科学》杂志,认为他们不应该一起发表两篇截然不同的论文。

    还有学者直白的说道,「为什么和王浩的结论完全相反的论文也可以发表呢?」

    这句话说的很没有道理,不可能说和某个重量级学者的研究结论相反研究就不能够发表。

    但仔细想想,还真的是很有道理!

    现在不就证明王浩的研究都是正确的,自然和他的结论相反的研究,肯定就是错误的。

    另外一点就是,大家都去关注《自然》杂志,因为《自然》杂志发布了影响力巨大的内容。

    为什么不是《科学》杂志?

    还不是因为索洛恩确定让帕森斯的论文发表,引起了国际舆论问题,导致王浩本人决定不再《科学》发表论文。

    所以索洛恩被解职了,他没有选择只能接受。

    至于帕森斯……

    一个失败者,早就已经被遗忘了。

    ……

    在会议结束以后,王浩回到了西海大学,就开始交代反重力性态研究中心的工作。

    他们当年第一任务就是按照会议分配进行实验。

    王浩还希望做高磁场对叠加力场影响相关的验证,但类似的研究并不是直接能做的,而且也需要根据叠加力场相关实验的结论分析,去对新实验进行设计。

    另外,想要制造大规模的高磁场,就需要引入新的设备,还需要对于整体实验装置进行升级。

    这些都是需要时间的。

    所以王浩安排了工作以后,就投入到了SMES电池的研究设计工作中。

    SMES电池的设计研究,已经进入到了关键时期,最少是王浩认为的关键时期。

    好多的设计工作准备都已经完成了,首先需要攻关的技术就是新型储能线圈。

    新型储能线圈,就是SMES电池的核心。

    储能线圈是储能、释放装置,自然就是电池最关键的组成部分,而相关的设计,最重要的有两点,一个就是材料选择,一个就是针对材料的拟定形态以及缠绕方式。

    后者相对比较复杂,而前者的也是不容易确定的。

    如果放在几年前,材料选择根本不是问题,因为他们根本没有选择。

    现在就不一样了,超导材料工业公司,生产了好几种超过120k临界温度的超导材料,都可以直接用在工业上。

    临界温度不同,材料的性态也不一样。

    有些材料能够承载的电流强度高,但受环境影响的波动也大,临界温度相对也低一些。

    有些材料符合后两者要求,承载的电流强度相对低。

    不过可选择的材料还是有限的,王浩去了超导材料工业公司,只花费了一个小时就确定了一种新型材料,工业代号为‘C013,。

    ‘C013,的临界温度为147K,所能承载的电流强度也不低,也符合超导电池制造设计需求。

    这个需求的基础,指的主要是高功率‘转变输出,。

    之后实验组就开始进行储能线圈的设计论证。

    如果只是提升线圈的储能效率,方法当然是有很多的,但最关键的是平衡储能效率和安全稳定性问题。

    储能线圈所处的环境非常特殊,高磁场、内部持续高电流以及温度都会带来影响。

    不管是瞬间过流、热扰动等,都会引起一系列连锁反应,也就是储能线圈的失超问题。<-->>

本章未完,点击下一页继续阅读