再从外面均匀射入激光束或粒子束,球面因吸收能量而向外蒸发,受它的反作用,球面内层向内挤压形成高温环境,让这几毫克的的氘和氚的混合气体爆炸,产生大量热能。

    如果每秒钟发生三四次这样的爆炸并且连续不断地进行下去,那么所释放出的能量就相当于百万千瓦级的发电站。

    简单的来说,惯性约束类似于氢弹爆炸,然后从爆炸能量中吸取热能发电。

    只不过是规模更小,可控性更高的那种。

    这种手段,对于徐川研究的等离子体湍流控制模型来说没有什么意义,因为聚变方式都截然不同。

    所以在排除掉工九院的惯性约束聚变装置‘神光’后,他能选择的实验堆,就只剩下了‘EAST’磁约束聚变托卡马克装置。

    ‘EAST’磁约束聚变托卡马克装置,又叫做全超导托卡马克核聚变实验装置,它曾在16年和18年分别创造了五千多万度和一亿摄氏度等离子体运行实验。

    在17年的时候创纪录地实现了稳定的101.2秒稳态长脉冲高约束等离子体运行。

    在国内,它是可控核聚变领域当之无愧龙头老大,哪怕是放到世界上,也是最顶尖那一批的实验堆。

    不过除了‘EAST’外,其他的聚变装置就有些差强人意了。

    徐川也没想到,在19年底的时候,国内的可控核聚变领域还是这幅样子。

    的确,从技术上来说,在可控核聚变这条路线上,国内已经是顶尖的那一批了,各项技术整体上来说还是相当不错的。

    但是在实验堆这一块,也的确有些稀少。

    除了‘EAST’磁约束聚变托卡马克装置外,在目前竟然没有其他的实验堆能做点火实验。

    后世出名的科大一环KTX聚变堆、环流器二号HL-2A和HL-2M实验堆等设备,在目前基本都还处于在建未完工状态。

    哪怕是完工时间最近的环流器二号,也需要等到20年的下旬去了。

    而且即便是完工了,它也没能力立刻就展开点火实验。至少还需要一到两年的时间走完各种测试,经历至少两道三轮以上的点火实验后,才可能对等离子体湍流模型进行测试。

    这种局面,让徐川无奈的苦笑了一下。

    现在看来,他根本就没有选择。

    唯一庆幸的是,‘EAST’磁约束聚变托卡马克装置的各项参数都相当优异。

    EAST装置的主机部分高11米,直径8米,重400吨,由超高真空室、纵场线圈、极向场线圈、内外冷屏、外真空杜瓦、支撑系统等六大部件组成。

    拥有16个大型“D”形超导纵场磁体,能产生纵场磁场强度3.5T;12个大型极向场超导磁体可以提供磁通变化ΔФ≥ 10伏秒;通过这些极向场超导磁体,将能产生≥ 100万安培的等离子体电流;持续时间能达到1000秒以上,在高功率加热下温度将超过一亿度

    这一系列的参数,哪怕是放到全世界,也是相当优秀的。

    优秀的设备,再配合等离子体湍流数学模型,哪怕仅仅是唯像级别的模型,徐川也有信心打破当前托卡马克装置运行最长时间的记录。

    甚至追逐一下仿星器的运行时间记录也不是不可能的事情。

    看完手中资料后,徐川轻轻的摇了摇头,叹道:“没想到国内可控核聚变的发展是这样的。”

    沙发上,高弘明身体前倾紧张的询问道:“没有符合要求的吗?”

    徐川点了点头,又摇了摇头,道:“符合要求的有,不过只有一个,庐阳那边的EAST装置从数据来看符合要求,至于其他的,都不行。”

    -->>

本章未完,点击下一页继续阅读